Scooter

Transportation Management Concept

A-Team

E-scooters

Main parts

Two wheels, a deck, and handlebars for steering addition of a battery, electronics, larger (often air-filled) tires, and an electric motor

Measurements

4.5 kg, 250-watt motor, a 250 watt-hour lithium-ion battery, top speed of 24 km/h, a range of 16 kms, around \$500

Last leg of a trip

- Cheaper than cabs
- More comfortable than buses
- Less effort than a bike

The Armenian Market

Yerevan Ride

e-scooters, bikes

Speed: 18-24 km/h

Tariffs: 50 AMD Start + 35 AMD per minute

Busy Fly

e-scooters

Speed: Eco (15 km/h), Drive(20 km/h), Sport (25 km/h)

Tariffs: 25-40 AMD/minute (depending on the speed)

Jet

e-scooters

Speed - 24 km/h

Tariffs - 50 AMD Start+ 30AMD per minute

SWOT Analysis

Strengths

- Eco-friendly
- Easy in usage
- Cheap in short distances
- Easy to store

Opportunities

- Develops micro-mobility (less traffic jams)
- The increasing number of users

Weaknesses

- Hard to control drivers
- Not enough regulations

Threats

• The increasing number of accidents

Lifespan

E scooters can definitely be the future of micro mobility

Eco friendly

Powered by electricity,
easily accessible and with
zero direct emissions.

Easy Usage

The effortless usage of escooters attracts a wide range of people from 16-40 years old; it is fast and helps to avoid traffic, which makes it an excellent choice.

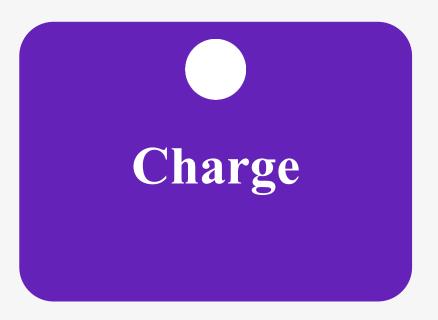
Regulations

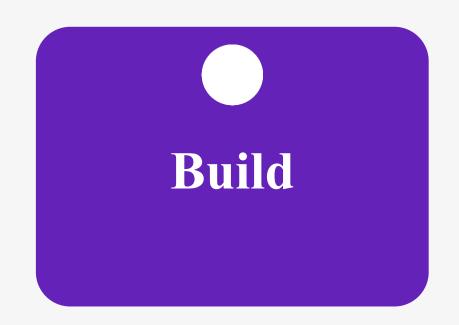
New projects will secure a safe transportation system for scooters. (E.g. Proposed project of new lines for scooters in North Avenue)

Key issues with E-scooters

Risky

Absence of infrastructure


Hard to control


Lack of restrictions

Increasing number of accidents

Key issue is the lack of regulations for E-scooters

- **Tactic**
- Implement speed limitation
- Ensure scooter visibility at night
- Ban usage of headphones
- Ban ride of one scooter with more than 1 person on it
- Create special parking spots for scooters
- Improve streets for scooter usage

The overall aim is to build a system that works harmoniously with all the street users.

Restrict

Strategies

Charg

Build

- Have limitation on scooters based on speed capacity(20km/h)
- Have neon light sign for night visibility on each scooter as mandatory, as well as protecting gear for riders
 - Insurance for e-scooters
 - partial ban of e-scooters in parks

- Ban usage of headphones
- Ban ride of one scooter with more than 1 person on it
- Charges from account for violations

Have cameras on each scooter from which driver of scooter should be visible in case if camera is closed during the ride the scooter will be blocked

- Create special parking spots for scooters
 - Improve streets for scooter usage
- Fines for the companies by the government

Parking through scan from special parking spot(if not parked there the money initially charged won't be refunded)

Companies give info to government about the streets where scooter usage is most, so that they know from where to start

Proposed instructions for

parking

User finishes the riide

- SmithsonAdverParking spot
- Somewhere on the streettising

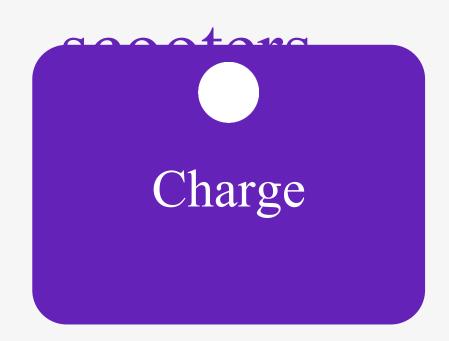
In the parking spot

The scanner attached to the parking spot will scan the scooter's QR code, and the rider will not be charged.

Random area

The riders will finish the ride and be charged additionally for not parking in the designed area.

Build			
	(in AMD)		total
Fines for parking in wrong			
places	2,000	180,000	360,000,000


Costs	(in AMD)					
		number of streets in	racks per	number of parks in	racks per	
	per rack	Yerevan	street	Yerevan	park	total
Building parking						11,200,00
racks	20,000	160	3	40	2	0

	per 5km	total
Improving infrastructure	2,000,000	4,000,000

Costs	(in AMD)				
	per rack	Number of streets in Yerevan	Pots per street	Number of parks in Yerevan	Pots per park
Building parking racks	20,000	160	3	40	2

Key issue is the lack of regulations for E-

- Implement speed limitation
- Ensure scooter visibility at night

Tactics

- Ban usage of headphones
 - Ban ride of one scooter with more than 1 person on it
- Create special parking spots for scooters
- Improve streets for scooter usage

The overall aim is to build a system that works harmoniously with all the street users.

Thanks for your attention!

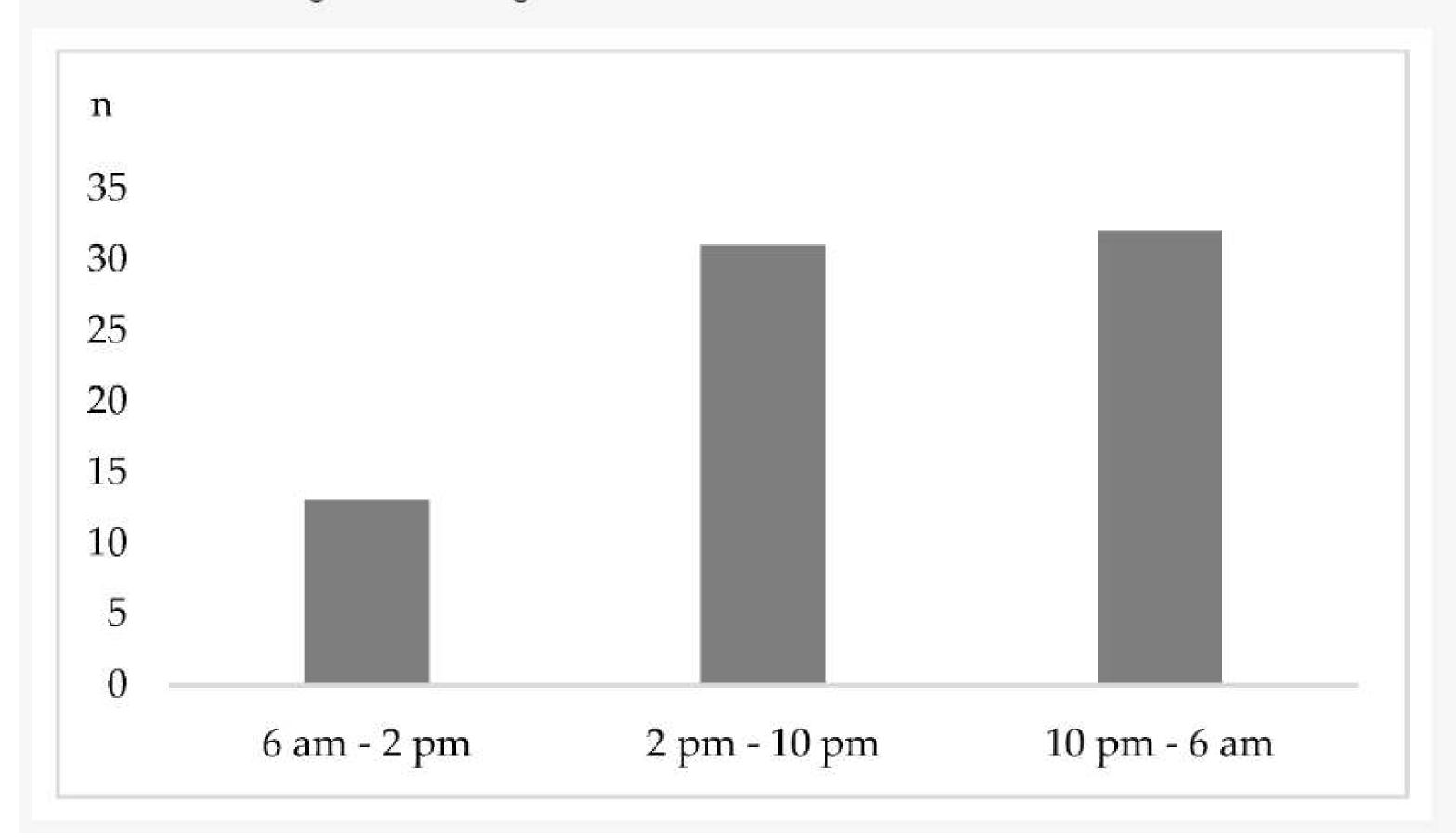
Appendix

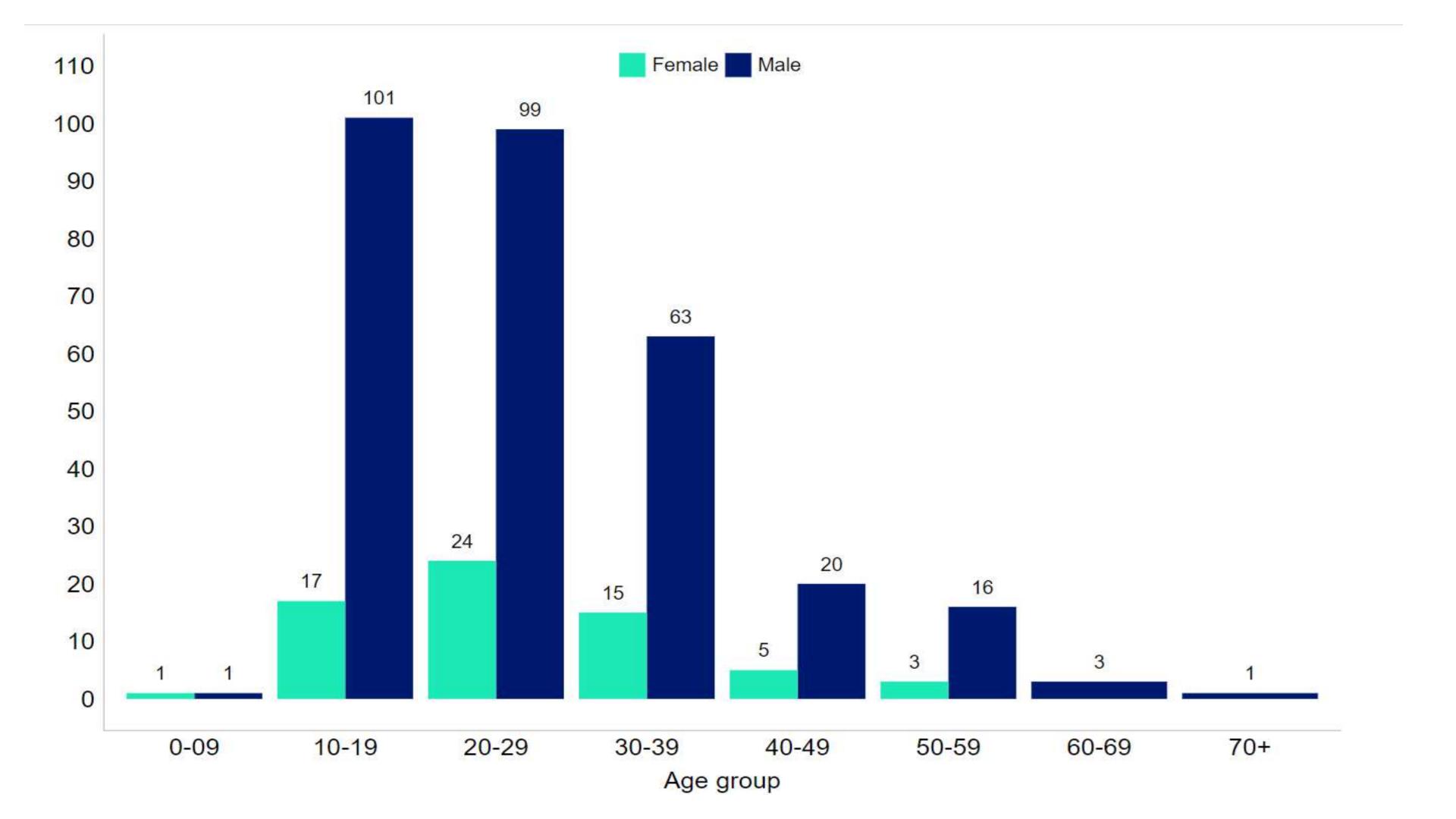
- 1. Headphone accidents
- 2. Accident and injury types
- 3. E-scooter injury frequency
- 4. Accidents and parking issue in Sweden
- 5. Cameras to protect riders and pedestrians
- 6. E-scooter partial ban and speed limit in Finland
- 7. Minimum age restrictions
- 8. Paris introducing fines for not parking properly
- 9. Speed limits and mandatory helmets
- 10. Other financial data (pages 25-26)

Accident and Injury Types of E-scooters

CURRENT LAWS

Only 'motorised scooters' are currently regulated & the following restrictions apply to their use:





Other types of E-Rideables currently require licenses to be used legally on WA roads and paths, and motorised scooters which don't comply with the above conditions are illegal.

Figure 3. Time dependent presentation of patients after e-scooter accidents. Most patient contacts were registered during on-call time.

Restrict			
	(in AMD)	number of scooters	total
Insurance	15,000	1,000	15,000,000

Charge	
For companies	
Number of scooters	1,000
Rides per day	5,000
Rides per year	1,800,000

Violations		
Usage of		
headphones	0.3	540,000
More than 1 rider	0.2	360,000

	(in AMD)	Total
Revenue from		
headphone violations	500	270,000,000
Revenue from passenger		
violations	500	180,000,000
Cost of cameras on		
scooters	3,000	3,000,000